7,159 research outputs found

    Speed and accuracy of dyslexic versus typical word recognition: an eye-movement investigation

    Get PDF
    Developmental dyslexia is often characterized by a dual deficit in both word recognition accuracy and general processing speed. While previous research into dyslexic word recognition may have suffered from speed-accuracy trade-off, the present study employed a novel eye tracking task that is less prone to such confounds. Participants (10 dyslexics and 12 controls) were asked to look at real word stimuli, and to ignore simultaneously presented non-word stimuli, while their eye-movements were recorded. Improvements in word recognition accuracy over time were modeled in terms of a continuous non-linear function. The words’ rhyme consistency and the non-words’ lexicality (unpronounceable, pronounceable, pseudohomophone) were manipulated within-subjects. Speed related measures derived from the model fits confirmed generally slower processing in dyslexics, and showed a rhyme consistency effect in both dyslexics and controls. In terms of overall error rate, dyslexics (but not controls) performed less accurately on rhyme-inconsistent words, suggesting a representational deficit for such words in dyslexics. Interestingly, neither group showed a pseudohomophone effect in speed or accuracy, which might call the task-independent pervasiveness of this effect into question. The present results illustrate the importance of distinguishing between speed- vs. accuracy related effects for our understanding of dyslexic word recognition

    Study of a MEMS-based Shack-Hartmann wavefront sensor with adjustable pupil sampling for astronomical adaptive optics

    Get PDF
    We introduce a Shack-Hartmann wavefront sensor for adaptive optics that enables dynamic control of the spatial sampling of an incoming wavefront using a segmented mirror microelectrical mechanical systems (MEMS) device. Unlike a conventional lenslet array, subapertures are defined by either segments or groups of segments of a mirror array, with the ability to change spatial pupil sampling arbitrarily by redefining the segment grouping. Control over the spatial sampling of the wavefront allows for the minimization of wavefront reconstruction error for different intensities of guide source and different atmospheric conditions, which in turn maximizes an adaptive optics system's delivered Strehl ratio. Requirements for the MEMS devices needed in this Shack-Hartmann wavefront sensor are also presented

    A New Approach To Estimate The Collision Probability For Automotive Applications

    Full text link
    We revisit the computation of probability of collision in the context of automotive collision avoidance (the estimation of a potential collision is also referred to as conflict detection in other contexts). After reviewing existing approaches to the definition and computation of a collision probability we argue that the question "What is the probability of collision within the next three seconds?" can be answered on the basis of a collision probability rate. Using results on level crossings for vector stochastic processes we derive a general expression for the upper bound of the distribution of the collision probability rate. This expression is valid for arbitrary prediction models including process noise. We demonstrate in several examples that distributions obtained by large-scale Monte-Carlo simulations obey this bound and in many cases approximately saturate the bound. We derive an approximation for the distribution of the collision probability rate that can be computed on an embedded platform. In order to efficiently sample this probability rate distribution for determination of its characteristic shape an adaptive method to obtain the sampling points is proposed. An upper bound of the probability of collision is then obtained by one-dimensional numerical integration over the time period of interest. A straightforward application of this method applies to the collision of an extended object with a second point-like object. Using an abstraction of the second object by salient points of its boundary we propose an application of this method to two extended objects with arbitrary orientation. Finally, the distribution of the collision probability rate is identified as the distribution of the time-to-collision.Comment: Revised and restructured version, discussion of extended vehicles expanded, section on TTC expanded, references added, other minor changes, 17 pages, 18 figure

    Integrable Lattice Realizations of N=1 Superconformal Boundary Conditions

    Get PDF
    We construct integrable boundary conditions for sl(2) coset models with central charges c=3/2-12/(m(m+2)) and m=3,4,... The associated cylinder partition functions are generating functions for the branching functions but these boundary conditions manifestly break the superconformal symmetry. We show that there are additional integrable boundary conditions, satisfying the boundary Yang-Baxter equation, which respect the superconformal symmetry and lead to generating functions for the superconformal characters in both Ramond and Neveu-Schwarz sectors. We also present general formulas for the cylinder partition functions. This involves an alternative derivation of the superconformal Verlinde formula recently proposed by Nepomechie.Comment: 22 pages, 12 figures; section 2 rewritten; journal-ref. adde
    • …
    corecore